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Abstract

This study investigates the curvature, diaphragm spacing, and diaphragm stiffness effects on the dynamic response of curved
steel bridges. The bridges under investigation are simple-span non-skewed slab-on-girder bridges. The bridges are modeled
using finite elements. The validity of the finite element models is established through comparison with theoretical and
numerical solutions available in the literature. Eigenvalue and spectral analyses are carried out on one straight and three
horizontally curved I-girder bridges with different values of diaphragm stiffness and diaphragm spacing. The results show that
the dynamic response of these curved bridges is influenced more by their curvature than by the stiffness and spacing of the
diaphragms. Although the effect of diaphragm spacing appears to be more pronounced for curved bridges with dominant in-
plane bending and torsion modes, a response spectrum analysis has demonstrated that its effect on the internal forces and
moments in the bridge members is only modest. Consequently, it can be concluded that in terms of dynamic behavior,
diaphragm spacing and stiffness have little significance on the design of this type of bridges.
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1. Introduction

For aesthetic consideration as well as simplicity in

arrangement, details, and construction, the use of curved

steel members has gained popularity for highway bridges

located on horizontally curved alignments (Taly, 1998).

In addition to aesthetics, the use of curved geometry has

allowed bridge engineers to design bridges for greater

span lengths and fewer piers. If straight girders are used

along the chords of a curved bridge, large and unequal

deck overhangs may occur that could lead to an uneven

shadowing on the girders or result in an undesirable

appearance. Curved members are also good candidates

for satisfying the strict demand placed on highway

structures by predetermined roadway alignments and

tight geometric restrictions.

The dynamic responses of horizontally curved beams

and bridges have been the subject of research by

numerous investigators since the 1960s. Culver (1967)

developed an exact solution for the equations of motion

governing the free vibration response of a horizontally

curved beam with two simply supported ends, and

approximate solutions for horizontally curved beams with

fixed-fixed as well as fixed-simply supported end conditions.

Tan and Shore (1968a) modeled a horizontally curved

bridge as a curved beam and solved the governing

differential equations for the free and forced vibrations of

the beam to investigate its dynamic response to a constant

moving load. They concluded that changing either the

radius of curvature or the rigidity ratio would result in a

change of the fundamental natural frequency of the

horizontally curved bridge. In another study, Tan and

Shore (1968b) derived and solved the differential equations

governing the dynamic response of a horizontally curved

bridge subjected to a forcing system consists of springs

and masses that simulate a vehicle traveling on the bridge

to investigate the effects of weight ratio and frequency

ratio on the dynamic behavior of the bridge. Christiano

and Culver (1969) formulated and solved the equations

governing the dynamic behavior of a single span,

horizontally curved bridge with an open cross-section to

study the response of the bridge to a moving load. Shore

and Chaudhuri (1972) solved the governing differential

equations to investigate the effects of transverse shear

deformation and the flexural rotatory inertia on the

natural frequencies of a horizontally curved beam.

Chaudhuri and Shore (1977) used the finite element

method to study the dynamic response of horizontally

curved I-girder bridges subjected to simulated highway

loadings. In their bridge model, the deck was modeled

*Corresponding author
Tel: +315-443-3394
E-mail: emlui@syr.edu



164 E. M. Lui et al.

using annular plate elements, the girders were modeled

by one-dimensional thin-walled circularly curved beam

elements, and the transverse diaphragms were modeled

using straight prismatic beam and frame elements. Yoo

and Fehrenbach (1981) developed exact stiffness matrices

for horizontally curved girders by utilizing the shape

functions derived from the solutions of the homogeneous

differential equations governing the static behavior of these

girders, and solved the element relationships numerically

to study the natural frequencies of these girders with

different end conditions. Mukhopadhyay and Sheikh

(1995) studied the large amplitude vibration of horizontally

curved beams having varying included angles, radii,

amplitude ratios and support conditions. Huang et al.

(1995) modeled a horizontally curved bridge as a planar

grillage beam system composed of horizontally curved

beam elements and straight beam elements to investigate

the dynamic behavior of curved I-girder bridges due to

one or two trucks (placed side by side) moving across

rough bridge decks and found that the impact factors of

bending and shear for inside girders of curved I-girder

bridges were significantly smaller than those for outside

girders. Kawakami et al. (1995) developed an approximate

method based on a combination of numerical integration

and numerical solution of integral equations to analyze

the free vibration of horizontally curved beams with

arbitrary shapes and variable cross-sections. Kang et al.

(1996) studied the free vibration response of horizontally

curved single-span, wide-flange beams having a range of

non-dimensional parameters representing variations in

warping stiffness, torsional stiffness, radius of curvature,

included angle of the curve, polar mass moment of

inertia, and various end conditions by using differential

quadrature method. More recently, Howson and Jemah

(1999) developed exact dynamic stiffness from the

governing differential equations of motion and studied the

out-of-plane frequencies of curved Timoshenko beams.

Huang et al. (1998) used a finite element model to study

the dynamic response and impact characteristics of a

series of thin-walled concrete box girder curved bridges

subject to AASHTO HS20-44 truck load simulated as a

multi-degree-of-freedom nonlinear vehicle model.

Although much work has been reported on the subject,

most of the studies described in the foregoing apply only

to curved beams. Except for the work reported by

Maneetes and Linzell (2003) and a few others, the study

of the dynamic behavior of curved bridges of which

curved girders are a component has been scanty. In

particular, very little work has been done to investigate

the vibration response of horizontally curved steel bridges

taking into consideration the combined influence of

curvature, diaphragm spacing and diaphragm stiffness

effects At present, diaphragms and cross-frames are

designed for static conditions only (Chen and Duan,

2000). In particular, the American Association of State

Highway and Transportation Official (AASHTO, 2004)

specifies that diaphragms or cross-frames shall be

designed to ensure:

• Transfer of lateral wind loads from the bottom of the

girder to the deck and from the deck to the bearings,

• Stability of the bottom flange for all loads when it is

in compression,

• Stability of the top flange in compression prior to

curing of the deck, and

• Distribution of vertical dead and live loads applied to

the structure.

Because no guidelines are provided for the design of

these diaphragms under dynamic or earthquake conditions,

the main objective of the present study is to determine

whether the inclusion of diaphragm effect in the dynamic

analysis of curved bridges will produce results appreciable

enough to warrant its inclusion in the seismic design of

curved bridges.

The inclusion of diaphragm effect in a dynamic

analysis undoubtedly complicates the problem. However,

the associated mathematical difficulties can be overcome

with the use of the finite element method (FEM) of

analysis. The FEM is therefore used in the present study.

In the following section the effects of mass and stiffness

changes on the free-vibration response of a structure is

discussed. This is followed by a description of the finite

element model used for the present investigation. Results

of a series of numerical studies performed on a straight

and three curved bridges are then presented and compared.

Using spectral analysis, the seismic behavior of the four

bridges with different numbers of diaphragms under three

different earthquakes is described. Conclusions are made

based on the results of these analyses.

2. Effects of Mass and Stiffness Changes

When there is a change in the mass and/or stiffness of

a structure, its modal properties such as natural

frequencies and mode shapes will change. In theory, the

natural frequencies and mode shapes of the modified

structure must satisfy an eigenvalue equation

[(K + ∆K) − ω2
im(M + ∆M)]ϕim = 0 (1)

where K and M are the original system stiffness and

mass matrices, respectively. ∆K and ∆M are the changes

in stiffness and mass, respectively. ωim is the ith mode

natural frequency corresponding to the ith mode shape

ϕim of the modified system. ωim and ϕim are related to the

original natural frequency ωi and mode shape ϕi by the

equations

ωim = ωi + ∆ωi, ϕim = ϕi + ∆ϕi (2)

where ∆ωi and ∆ϕi represent the change in the ith mode

natural frequency and mode shape of the modified

system.

The amount of perturbation in natural frequency and

mode shape depends not only on the magnitude but also

on the manner by which the mass and stiffness of the

system are changed. As an example, consider the simply
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supported beam shown in Fig. 1. If the flexural rigidity

EI, density ρ, and cross-sectional area A are all constants

along the length L of the beam, its natural frequencies for

transverse vibration ignoring shear deformation effect are

given by the equation

, i = 1,2,.....n (3)

The corresponding mode shapes (of which the first five

are shown in Fig. 1) are given by

, i = 1,2,.....n (4)

where C is a constant.

Suppose a mass equal to 10% of the mass of the beam

is added to the system. Its effect on the natural frequencies

of the beam is dependent on where the added mass is

located. From Table 1 in which the percent changes in the

first five natural frequencies are shown, it can be seen that

the added mass affects a particular natural frequency the

most when it is placed at location(s) of maximum

displacement for the mode shape that corresponds to that

natural frequency. Similarly, if one increases the stiffness

(obtained by doubling the moment of inertia at selected

segments) of the beam, it can be seen from Table 2 the

particular natural frequency that will be most affected by

the added stiffness is the one that corresponds to the mode

shape with the highest curvature. Another phenomenon

that can be readily observed from these tables is that

added mass decreases the system frequencies, whereas

added stiffness increases the system frequencies.
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Figure 1. Free vibration response of a simply-supported
beam.

Table 1. Effect of added mass location on natural frequency

Mode

Percent change in natural frequency, [(ωim−ωi)/ωi]×100%

10% mass added on beam segment

AB and JK BC and IJ CD and HI DE and GH EF and FG

1 0-0.382 -2.10 -4.65 -7.07 -8.47

2 -1.32 -5.89 -8.36 -5.89 -1.32

3 -2.59 -7.55 -4.35 -1.17 -5.70

4 -3.78 -6.23 -1.69 -6.23 -3.78

5 -4.55 -4.11 -4.22 -4.34 -3.80

Table 2. Effect of added stiffness distribution on natural frequency

Mode

Percent change in natural frequency, [(ωim−ωi)/ωi]×100%

100% stiffness increase in beam segment

AB and JK BC and IJ CD and HI DE and GH EF and FG

1 00.318 2.16 5.41 8.98 11.300

2 1.23 7.04 11.300 7.04 1.23

3 2.54 10.800 5.88 00.984 10.600

4 3.99 10.500 1.24 10.500 3.99

5 5.38 6.74 6.29 5.89 7.99



166 E. M. Lui et al.

When diaphragms or cross-frames are installed on a

bridge, mass and stiffness will be added. It is the intent of

this study to determine what effect these diaphragms may

have on the dynamic and seismic responses of horizontally

curved slab-on-girder steel bridges.

3. Finite Element Model

The software used for the present study is the general

purpose finite element program ANSYS (2004). The steel

girders and diaphragms were modeled using beam

element, while the concrete deck was modeled using shell

elements. A brief description of the model is given below.

3.1. Modeling of the steel girders

In the present study, curved steel girders were modeled

using a series of straight Beam188 elements. ANSYS’s

Beam188 element is a 3-D beam element suitable for

analyzing slender to moderately short beam structures. Its

formulation is based on the Timoshenko beam theory.

The element has six and an optional seventh degrees of

freedom per node. The six degrees of freedom are:

translations in the x, y, and z directions; and rotations

about the x, y, and z axes. The seventh degree of freedom,

which can be activated or deactivated, allows the user to

consider the effect of cross-section warping in the

analysis. Based on a convergence study of a number of

simply-supported curved beams with curvatures that vary

from 0.002 to 0.01 ft−1 (0.0066 to 0.033 m−1), it was

determined that the optimal number of elements needed

to obtain sufficiently accurate results was forty.

As an example, refer to Table 3 in which the fundamental

frequencies ω1 obtained using 40 elements are compared

to those reported by Culver (1967), and Shore and

Chaudhuri (1972) for a series of curved beams with

different subtended angles and radii of curvatures. Good

correlation is observed.

As another example, consider Fig. 2 in which results

obtained using the present model is compared with those

reported by Yoo and Fehrenbach (1981) on the

fundamental frequencies of a series of simply-supported

curved beams with different rigidity ratios αk spread over

a range of subtended angle from 10 to 90. The rigidity

ratio αk = GKT/EIz (where G is the shear modulus, E is the

modulus of elasticity, KT is the torsional constant, and Iz

is the moment of inertia about the strong axis of the

cross-section) is defined as the ratio of torsional to

flexural rigidity of the beam. The range of αk used varies

from 0.002 to 0.4. According to Yoo and Fehrenbach, a

rigidity ratio of 0.002 is roughly equivalent to that of an

isolated wide-flanged beam, and a rigidity ratio of 0.4 is

somewhat equal to that of a built-up deck section. In the

figure all fundamental frequencies w1 are normalized by

the corresponding fundamental frequencies of a straight

beam ωst having the same material and cross-sectional

properties, and curves are drawn between data points to

show trends. It can be seen from the figure that good

correlation is obtained between the two sets of results.

3.2. Modeling of the concrete deck

The deck was modeled using Shell91 elements. ANSYS’s

Shell91 is an 8-node nonlinear multi-layered shell element

Table 3. Comparison of results for horizontally curved beams with different subtended angles and radii of curvatures (1
in. = 2.54 cm)

Subtended
Angle
 (deg)

Radius of
Curvature

 (in.)

 Present
(40 elements)

 Culver  Shore and Chaudhuri

 ω1

(rad/s)
 ω1

(rad/s)
Percent
error

 ω1

(rad/s)
Percent
error

 10
 20
 30
 40
 50
 60
 70
 80
 90

 1155.5
 577.8
 385.2
 288.9
 231.1
 192.6
 165.1
 144.4
 128.4

 197.0
 183.2
 160.9
 139.2
 119.8
 102.9
 88.3
 75.7
 64.6

 202.5
 184.3
 162.2
 140.0
 120.9
 103.8
 88.9
 76.0
 64.6

 -2.8
 - 0.6
 - 0.8
 -0.6
 - 0.9
 -0.9
 - 0.7
 - 0.4

 0

 203.3
 186.3
 164.7
 142.8
 122.8
 105.2
 90.0
 76.8
 65.2

 -3.2
 - 1.7
 -2.4
 - 2.6
 - 2.5
 - 2.2
 -1.9
 -1.5
 - 0.9

Figure 2. Comparison of results for horizontally curved
beams with different rigidity ratios.
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that has six degrees of freedom per node: translation in

the nodal x, y, z directions; and rotations about the nodal

x, y, and z axes. To establish the optimal number of

elements to be used, a convergence study was performed

using various deck aspect (length-to-width) ratios. The

study showed that the use of 240 elements would give

good results for deck aspect ratios in the range of 2 to 10.

This range of aspect ratios is considered inclusive of most

slab-on-girder type bridge decks. As a representative

example, Table 4 shows a comparison of the numerically

obtained natural frequencies with their theoretical values

given by Soedel (1981) for a simply-supported rectangular

flat plate 100 ft. (30.5 m) long, 24 ft. (7.315 m.) wide,

and 8 in. (20.3 cm) thick modeled using a 40×6 grid of

elements. The material properties used were: elastic

modulus E = 3,000 ksi (20.7 GPa), Poisson ratio ν = 0.16,

and mass density ρ = 4.5 slugs/ft3 (2300 kg/m3). The

values m and n correspond to the number of half sine

waves along the long and short dimensions of the plate,

respectively.

3.3. Modeling of the diaphragms

Diaphragms in the form of channel or W sections that

connect adjacent parallel girders were modeled using

Beam4 element. ANSYS’s Beam4 element is a 3-D

uniaxial element with tension, compression, torsion, and

bending capabilities. The element has six degrees of

freedom per node: translations in the x, y, and z

directions; and rotations about the x, y, and z axes.

Because diaphragms are often connected to the girders by

connection plates that are welded to the girders, the model

assumes that the connections between the diaphragms and

the girders are rigid.

The composite action between the bridge deck and the

supporting girders was modeled using massless rigid

elements. Because the centroidal axes of the girders and

the mid-surface of the deck do not lie on the same plane,

these rigid elements are used to tie the centroids of the

concrete deck and the steel girders together to simulate

full composite action. The height of the rigid elements is

taken as the vertical distance between the mid-surface of

the bridge deck and the centroidal axes of the girders.

Figure 3 shows a typical ANSYS model of a horizontally

curved bridge.

A curved bridge used in a paper by Huang et al. (1995)

will be used to test the viability of the aforementioned

modeling technique. The bridge in question has a centerline

length of 100 ft. (30.5 m), a centerline radius of 500 ft.

(152 m), and a superelevation e = 0.12. The bridge deck

consists of a reinforced concrete bridge slab with a width

of 27.28 ft. (8.315 m) and a thickness of 7.5 in. (19 cm)

supported by four curved steel girders. The girders are

connected transversely by seven equally spaced diaphragms.

The cross-section properties and mass per unit length

used for the different bridge components in the structural

model are summarized in Table 5.

Because values for the warping constant were not

reported by Huang et al. for the girders, it was assumed

that the warping restraint effect was not considered in

their analysis. As a result, the warping deformation option

for Beam188 was turned off in the analysis.

The first six natural frequencies obtained using the

present method are compared in Table 6 to those reported

by Huang et al. obtained using the planar grillage beam

model. The results are quite comparable. The slight

discrepancy is likely due to the use of rather different

approaches to model the bridge (finite element versus the

grillage models).

Table 4. Comparison of natural frequencies (radians/sec)

m
n

1 2 3 4 5 6

Present Theory Present Theory Present Theory Present Theory Present Theory Present Theory

1 37.3 37.4 43.2 43.5 53.3 53.7 67.3 67.9 85.5 86.3 107.7 108.7

2 143.0 143.5 148.9 149.6 158.8 159.8 172.6 174.1 190.0 192.4 212.0 214.8

Table 5. Bridge properties

Component
Iz

(cm4)
Iy

(cm4)
KT

(cm4)
A

(cm2)
Mass

(kg/m)

Exterior girder 4.731×106 1.366×105 5.089×104 2.430×103 1916

Interior girder 4.895×106 1.413×105 5.810×104 2.021×103 1593

End diaphragm 0.268×106 0.077×105 2.729×104 0.193×103 152

Interior diaphragm 0.600×106 0.173×105 4.221×104 0.236×103 186

Figure 3. A Horizontally curved bridge model.



168 E. M. Lui et al.

4. Eigenvalue analysis

In this section an eigenvalue analysis will be carried out

to determine how diaphragm spacing and stiffness may

affect the free vibration response of simply-supported

curved steel I-girder bridges. Some useful observations

are made based on frequency and mode shape results

generated from these free vibration analyses.

4.1. Description of the bridges

One straight and three horizontally curved simple-span

I-girder bridges are considered in the present study. All

the bridges have the same centerline length L = 100 ft.

(30.5 m) and are simply supported at both ends (i.e.,

u = v = w = φx = 0). The lines of supports at the ends of

the curved bridges are oriented in the radial direction. The

deck of the straight bridge has no superelevation, but

those of the curved bridges have a constant superelevation

of e = 0.1. The radius of curvature of the curved bridges

varies from 400 ft (122 m) to 100 ft (30.5 m), resulting in

a range of subtended angles that varies from 0.25 rad. to

1.0 rad. as shown in Fig. 4.

All the bridges used in the present study have a reinforced

concrete deck supported by, and acted compositely with,

four steel girders that are connected transversely by

diaphragms. The four steel girders are curved in plane

and evenly spaced at a distance of 8 ft. (2.44 m) along the

width of the deck and have the following cross-sectional

properties: cross-sectional area A = 70 in2 (452 cm2), major

axis moment of inertia Iz = 46,213 in4 (1.92×106 cm4),

minor axis moment of inertia Iy = 1,334 in4 (5.55×104

cm4), torsional constant KT= 15.83 in4 (658.9 cm4), warping

constant Cw = 1.20×106 in6 (3.22×108 cm6), height h = 62

in (158 cm). Three diaphragm spacing: 50 ft (15.2 m), 25

ft (7.62 cm) and 12.5 ft (3.81 m) are used, giving a span

length to diaphragm spacing ratio of 2, 4, and 8, respectively.

The number of diaphragms used is therefore 3, 5, and 9

for each case. For the bridge with 5 diaphragms, three

different diaphragm sizes are used. They are: Case 1,

A = 27.02 in2 (174 cm2), Iz = 5,860 in4 (2.44×105 cm4),

Iy = 10 in4 (416 cm4), KT = 11.5 in4 (478.7 cm4); Case 2,

A = 38.21 in2 (247 cm2), Iz = 11,720 in4 (4.88×105 cm4),

Iy = 20 in4 (832 cm4), KT = 23 in4 (957.3 cm4); Case 3,

A = 46.80 in2 (302 cm2), Iz = 17,580 in4 (7.32×105 cm4),

Iy = 30 in4 (1.25×103 cm4), KT = 34.5 in2 (1436 cm4). The

reinforced concrete deck has a constant centerline length

of L = 100 ft. (30.5 m), a width of 24 ft. (7.32 m), and

total thickness of 8 in. (20.3 cm). In order to take into

consideration the reinforcing steel bars, the deck is

modeled using a three-layer shell element. The three

layers are: (1) a 0.9-in-thick concrete cover, (2) a 0.1-in-

thick reinforcing steel, and (3) a 7-in-thick concrete. The

thickness of the reinforcing steel layer is calculated using

the concept of equivalent area (i.e., the area of the

reinforcing steel layer used in the finite element model is

set equal to the area of reinforcing steel bars used in the

deck). The amount of reinforcing bars is calculated using

50% of the amount of balanced steel bars. The yielding

strength of the steel used is fy = 60 ksi (414 MPa), and the

compressive strength of the concrete used is fc' = 4 ksi

(27.6 MPa). The material properties used for steel are:

elastic modulus E = 29,000 ksi (200 GN/m2), shear modulus

G = 11,200 ksi (77.3 GN/m2), and mass density ρ = 15.2

slugs/ft3 (7850 kg/m3). The material properties used for

concrete are: elastic modulus E = 3,000 ksi (20.7 GPa),

shear modulus G = 1293 ksi (8.92 GPa), and mass density

ρ = 4.5 slugs/ft3 (2300 kg/m3). Figure 5 shows the plan

views of the curved bridge models with three, five and

Table 6. Comparison of natural frequencies (Hz)

Mode 1 2 3 4 5 6

Present 4.48 5.13 15.4 17.9 18.3 20.1

Huang et al. 3.62 4.83 14.5 16.6 19.6 23.8

Figure 4. Plan view of bridges with different subtended angles.
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nine diaphragms, and Fig. 6 show the cross-section views

of the straight and curved bridges.

4.2. Effect of diaphragm spacing

Using the aforementioned modeling technique, eigenvalue

analyses were carried out for the bridges with different

diaphragm spacing. The first eight natural frequencies for

each bridge with 3, 5, and 9 diaphragms (i.e., with a span

length to diaphragm spacing ratio of 2, 4 and 8) are

summarized in Tables 7 to 10. Schematics of the first five

mode shapes for the straight and curved bridges with five

diaphragms are shown in Figs. 7 and 8, respectively. Based

on the results of these analyses, the following conclusions

can be made:

1. As expected, bending and torsional modes are

always coupled for the curved bridges. The degree of

coupling increases with the subtended angle.

2. Because the lower modes are often dominated by

out-of-plane bending, and the higher modes are often

dominated by torsion/twisting and in-plane bending, the

increase in the number of diaphragms (which tends to

increase the torsion/twisting and in-plane bending

stiffness of the system) often results in an increase in the

spread of frequencies, and hence increases the bandwidth

of the frequency spectrum.

3. Increasing the number of diaphragms does not have

much effect on the mode shape of the fundamental mode,

but it does change the mode shapes for the higher modes

(i.e., modes 2,3,4,5).

4. The high modes (i.e., modes 6,7,8) are almost

exclusively bending and twisting of the girders between the

diaphragms (i.e., they are local rather than global modes).

Because diaphragms tend to restrain this type of girder

deformation, the frequency increases somewhat with an

increase in the number of diaphragms.

5. While for all the bridges the change in frequencies

for the lower modes is almost negligible when the

number of diaphragms is increased, the change becomes

Figure 5. Plan view of curved bridges with different
diaphragm spacing.

Figure 6. Straight and curved bridge cross-sections.

Table 7. Natural frequencies (Hz) of a straight bridge with
case 1 diaphragm stiffness and different diaphragm spacing

Mode
3-Diaphragm

bridge
5-Diaphragm

bridge
9-Diaphragm

bridge

1 4.505 4.477 4.421 

2 4.707 4.680 4.624 

3 15.640 15.771 15.646 

4 16.624 16.539 16.391 

5 20.890 21.569 21.621

6 21.995 30.543 31.367 

7 23.514 30.635 31.374 

8 24.274 31.136 31.383 
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more noticeable for the higher modes, especially the high

modes that involve local bending and twisting of the

girders. Nevertheless, this change is more noticeable

when the number of diaphragms is increased from 3 to 5,

and less significant when the number of diaphragms is

further increased to 9. This observation suggests that

increasing the number of diaphragms beyond a span

length to diaphragm spacing ratio of 4 will have a

negligible effect on the dynamic response of the bridge.

4.3. Effect of diaphragm stiffness

In Tables 11 to 14, the first eight natural frequencies for

the four bridges with 5 diaphragms having different

diaphragm stiffness labeled Case 1, 2 and 3 as described

earlier are summarized. As can be seen, diaphragm

stiffness changes the frequencies somewhat, but the

change is quite minimal. It can therefore be concluded

that diaphragm stiffness will not have a significant

influence on the dynamic behavior of the bridges,

regardless of whether it is straight or curved.

Table 8. Natural frequencies (Hz) of a curved bridge with
case 1 diaphragm stiffness and different diaphragm spacing
(Subtended angle = 0.25 rad.)

Mode
3-Diaphragm

bridge
5-Diaphragm

bridge
9-Diaphragm

bridge

1 4.629 4.605 4.556

2 5.233 5.322 5.472

3 15.685 15.572 15.543

4 16.170 17.371 17.574

5 17.152 21.547 21.772

6 20.061 22.396 28.275

7 23.194 31.212 31.218

8 25.180 31.224 31.226

Table 9. Natural frequencies (Hz) of a curved bridge with
case 1 diaphragm stiffness and different diaphragm spacing
(Subtended angle = 0.5 rad.)

Mode
3-Diaphragm

bridge
5-Diaphragm

bridge
9-Diaphragm

bridge

1 4.431 4.406 4.363 

2 6.620 6.830 6.960 

3 14.586 14.735 14.877 

4 16.826 18.569 18.748 

5 17.608 22.456 22.828 

6 21.049 25.061 31.173 

7 22.389 30.644 31.229 

8 25.712 31.203 31.236 

Table 10. Natural frequencies (Hz) of a curved bridge with
case 1 diaphragm stiffness and different diaphragm spacing
(Subtended angle = 1.0 rad.)

Mode
3-Diaphragm

bridge
5-Diaphragm

bridge
9-Diaphragm 

bridge

1 3.726 3.729 3.755 

2 9.415 10.284 11.001 

3 11.337 12.615 13.267 

4 18.242 20.711 21.295 

5 18.633 24.210 25.117 

6 22.766 25.167 29.897 

7 23.643 27.380 31.260 

8 24.825 28.407 31.263 

Figure 7. Natural vibration mode shapes (Straight bridge).

Figure 8. Natural vibration mode shapes (Curved bridge).
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5. Response Spectrum Analysis

The results of an eigenvalue analysis of the bridges

discussed in the preceding section have demonstrated that

the effects of diaphragm stiffness and spacing on the

natural frequencies of the bridges are not very pronounced.

An explanation for this is that an increase in system

stiffness is accompanied by a corresponding increase in

mass when larger-sized and closer-spaced diaphragms are

used for the bridges. In this section, results of a response

spectrum analysis carried out for three earthquakes - San

Fernando, Kobe and Kocaeli - will be presented to evaluate

the effect of diaphragm stiffness and spacing on the

seismic response of these bridges. These three earthquakes

were selected because they exhibited different magnitudes,

duration, and frequency contents to cover sufficient

variability of strong ground motions to conduct response

spectrum analyses and base conclusions on. The response

spectra of the three representative earthquakes used in the

present study are shown in Fig. 9 and pertinent characteristics

of the each earthquake are summarized in Table 15.

Table 11. Natural frequencies (Hz) of a straight bridge with
5 diaphragms and different diaphragm stiffness

Mode
Case 1

diaphragm
Case 2

diaphragm
Case 3

diaphragm

1 4.477 4.457 4.443

2 4.680 4.656 4.638

3 15.774 15.719 15.668

4 16.539 16.459 16.397

5 21.569 21.535 21.490

6 30.543 30.656 30.676

7 30.635 30.785 30.800

8 31.136 31.362 31.354

Table 12. Natural frequencies (Hz) of a curved bridge with
5 diaphragms and different diaphragm stiffness (Subtended
angle = 0.25 rad.)

Mode
Case 1

diaphragm
Case 2 

diaphragm
Case 3

diaphragm

1 4.605 4.582 4.564

2 5.322 5.307 5.291

3 15.572 15.510 15.457

4 17.371 17.317 17.263

5 21.547 21.577 21.550

6 22.396 23.627 24.541

7 31.212 31.184 31.153

8 31.224 31.212 31.201

Table 13. Natural frequencies (Hz) of a curved bridge with
5 diaphragms and  different diaphragm stiffness (Subtended
angle = 0.5 rad.)

Mode
Case 1

diaphragm
Case 2 

diaphragm
Case 3

diaphragm

1 4.406 4.384 4.368

2 6.829 6.812 6.792

3 14.735 4.701 14.659

4 18.569 18.556 18.522

5 22.456 22.469 22.435

6 25.061 26.902 28.091

7 30.644 30.908 30.870

8 31.203 31.203 31.206

Figure 9. Earthquake response spectra.

Table 14. Natural frequencies (Hz) of a curved bridge with
5 diaphragms and different diaphragm stiffness (Subtended
angle = 1.0 rad.)

Mode
Case 1

diaphragm
Case 2 

diaphragm
Case 3

diaphragm

1 3.729 3.714 3.703

2 10.284 10.304 10.297

3 12.615 12.662 12.668

4 20.711 20.777 20.777

5 24.210 24.180 24.125

6 25.167 25.691 25.945

7 27.380 28.035 28.431

8 28.407 29.812 30.363

Table 15. Earthquake characteristics

Earthquake Location/Year Station Richter scale
Peak ground
acceleration

Approx.
duration

San Fernando Sylmar-San Fernando, California, USA Lake Hughes #12 6.6 0.283g 8 sec.

Kobe Kobe, Japan Nishi-Akashi 7.2 0.503g 20 sec.

Kocaeli Kocaeli, Turkey Arcelik 7.4 0.149g 45 sec.
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Using the Multimode Spectral Method of analysis for

earthquake loads (AASHTO, 2004) in conjunction with

the 100/30 rule for earthquake directional combinations

and the Complete Quadratic Combination (CQC) rule for

modal combinations (Chen and Scawthorn, 2003), the

absolute value of the maximum girder shears, moments

and torques were calculated. The number of modes used

in the analyses was such that the modal mass participation

Table 16. Results of response spectrum analysis (San Fernando Earthquake) (1 kip = 4.45 kN, 1 k-ft = 1.36 kN-m)

Bridge
type

Number
of

diaphragms

Strong axis
shear
(kips)

Weak axis
shear
(kips)

Strong axis
moment

(k-ft)

Weak axis
moment

(k-ft)

Torque
(k-ft)

Straight
3
5
9

5.24
4.61
3.19

97.9
99.7
102.8

471.5
457.0
430.4

14.8
15.6
9.85

0.247
0.248
0.248

Curved with
0.25 rad.

Subtended angle

3
5
9

18.9
18.9
18.8

101.4
98.3
98.9

515.6
502.7
498.0

43.6
44.3
43.0

0.249
0.254
0.276

Curved with
0.50 rad.

Subtended angle

3
5
9

11.7
11.9
11.6

108.9
110.3
113.6

615.0
612.8
616.1

15.7
16.6
17.2

0.221
0.217
0.227

Curved with
rad.

Subtended angle

3
5
9

31.4
33.4
32.3

121.4
117.8
119.5

959.8
976.1
1047.9

79.9
83.3
62.2

0.365
0.441
0.263

Table 17. Results of response spectrum analysis (Kobe Earthquake) (1 kip = 4.45 kN, 1 k-ft = 1.36 kN-m)

Bridge
type

Number
of

diaphragms

Strong axis
shear
(kips)

Weak axis
shear
(kips)

Strong axis
moment

(k-ft)

Weak axis
moment

(k-ft)

Torque
(k-ft)

Straight
3
5
9

5.32
4.70
3.30

91.0
88.9
91.5

566.9
547.3
531.3

12.7
13.9
8.05

0.196
0.197
0.198

Curved with
0.25 rad.

Subtended angle

3
5
9

19.2
19.1
18.7

95.8
93.1
94.0

597.2
581.9
574.3

44.7
44.8
42.1

0.249
0.252
0.272

Curved with
0.50 rad.

Subtended angle

3
5
9

10.7
10.9
10.6

101.3
102.4
105.9

719.6
722.7
736.4

18.9
20.1
16.3

0.207
0.202
0.214

Curved with
rad.

Subtended angle

3
5
9

33.0
35.0
33.9

124.4
112.6
124.7

899.0
916.6
982.2

74.5
77.7
58.2

0.378
0.462
0.271

Table 18. Results of response spectrum analysis (Kocaeli Earthquake) (1 kip = 4.45 kN, 1 k-ft = 1.36 kN-m)

Bridge
type

Number
of

diaphragms

Strong axis
shear
(kips)

Weak axis
shear
(kips)

Strong axis
moment

(k-ft)

Weak axis
moment

(k-ft)

Torque
(k-ft)

Straight
3
5
9

4.30
3.77
3.85

75.1
69.6
71.4

754.8
738.2
732.5

13.4
11.3
6.47

0.110
0.107
0.104

Curved with
0.25 rad.

Subtended angle

3
5
9

10.0
10.1
10.3

79.1
76.2
77.1

818.4
806.2
802.9

18.0
17.0
14.9

0.150
0.149
0.161

Curved with
0.50 rad.

Subtended angle

3
5
9

9.15
9.44
9.37

87.4
89.4
92.8

861.1
859.0
861.6

24.3
24.5
21.8

0.166
0.169
0.168

Curved with
1.0 rad.

Subtended angle

3
5
9

28.5
30.3
29.3

107.0
106.5
107.3

1083.6
1100.2
1177.4

90.3
94.1
69.9

0.322
0.396
0.231
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exceeded 90% of the total mass of the structure (UBC,

1997; IBC, 2000) in the direction of ground motion. This

resulted in a number that exceeded the AASHTO

requirement that the number of modes used must be at

least three times the number of spans for the bridge. The

results so obtained are presented in Tables 16 to 18 for the

three earthquakes. It can be seen in the tables that for a

given bridge curvature, the maximum shear, moment and

torque do not vary significantly. The maximum variation

is within 10%. This variation is well within the amount of

error expected in a response spectrum analysis. In

addition, when an actual design is performed, a design

(rather than the actual earthquake) spectrum is used. The

averaging technique used in constructing the design

spectrum will undoubtedly further reduce the amount of

variability in the internal forces and moments. In the

context of design for dynamic response, the sizing of the

members will not be affected by the number and spacing

of diaphragms.

While the effects of diaphragm stiffness and spacing

are not significant, the results in the tables do indicate a

strong dependence of the internal forces and moments on

the amount of curvature of the bridge. Bridges with sharp

curvatures often exhibit higher internal forces and moments.

6. Summary and Conclusions

The major objective of this paper is to investigate the

effects of diaphragm stiffness and spacing on the dynamic

behavior of simple-span non-skewed curved I-girder bridges.

A finite element model of a curved bridge superstructure

was developed, verified and used in a parametric study to

evaluate the dynamic response of a series of straight and

curved simple-supported bridges with different diaphragm

spacing and stiffness. Based on this study, the following

conclusions can be made:

1. Bending and torsion modes are always coupled for

curved bridges.

2. While out-of-plane bending modes often dominate at

low frequencies, torsion/twisting and in-plane bending

modes usually dominate at higher frequencies. Beyond

the first five modes, the mode shapes change from global

to local with bending and twisting of girders occurring

between diaphragms.

3. Diaphragm stiffness does not appear to have an

appreciable effect on the frequencies and mode shapes of

the curved bridges used in this study.

4. The effect of diaphragm spacing is more pronounced

for curved bridges when compared to straight bridges.

Decreasing the diaphragm spacing tends to increase the

natural frequencies. However, this increase becomes

insignificant when the bridge span to diaphragm spacing

ratio exceeds 4.

5. Because the effects of diaphragm stiffness and

spacing on the natural frequencies of the bridges are not

appreciable, the variation of internal forces and moments

obtained from a response spectrum analysis for curved

bridges with different diaphragm stiffness and spacing but

with a given curvature are not substantial either.

6. While diaphragm stiffness and spacing have only

modest influence on the dynamic response of curved

bridges, the curvature of the bridge has a rather

pronounced effect. Internal forces and moments increased

noticeably for curved bridges with sharp curvatures.
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